Pressure was measured with a wire resistance gauge. Such a gauge must be calibrated against a primary pressure standard or against pressure-fixed points, such as phase-transition pressures, which have been themselves accurately established relative to a primary standard. In this work the gauge was a loosely wound coil of 0.005 -in.-diam Au-2.1\% Cr alloy of about $13-\Omega$ resistance. The details of the gauge preparation and calibration against a precision frec-piston gauge have been given elsewhere. ${ }^{33}$ The gauge resistance is determined with the aid of a six-dial potentiometer to an accuracy of 5 ppm , which means that it was possible to detect a pressure change on the order of 6 bar. The calibration of the gauge is given in Table I. The coefficients given there were obtained by a quadratic leastsquares fit of the gauge-resistance-vs-pressure data. The standard deviation of the data from the leastsquares curve was 0.00008Ω in approximately 12Ω, which is equivalent to 6 bar.

There is some difficulty with drift in the calibration of Au-Cr pressure gauges. A check on the gauge calibration at $21.9^{\circ} \mathrm{C}$ at the time of the velocity experiments showed that it had drifted by an approximately

Table I. Coefficients of the pressure gauge calibration curve, $\Delta R / R_{0}=A P+B P^{2}$.

Tempcrature $\left({ }^{\circ} \mathrm{C}\right)$	A $\left(\mathrm{bar}^{-1} \times 10^{-6}\right)$	B $\left(\mathrm{bar}^{-2} \times 10^{-13}\right)$
21.9	1.070	-4.7
40.5	1.057	-7.4
52.9	1.044	-6.2

linear factor of $0.4 \% \pm 0.2 \%$ over the eight-month period between the free-piston-gauge calibration and the velocity experiments in such a way as to make the relative change of resistance smaller for a given change of pressure. Since it would have been prohibitively difficult and expensive to check the calibration at the other two temperatures, it is assumed that the calibration drifted in the same way for those temperatures. The calibration in Table I represents the corrected calibration and is therefore reliable to about 0.4%.

RESULTS

For the purpose of calculation, the measured pressure dependence of the sound velocity given in Table II is fitted to the equations

$$
\begin{align*}
& P=A+B c_{T}+D c_{T^{2}}^{2} \tag{1}\\
& c_{T}=A^{\prime}+B^{\prime} P+D^{\prime} P^{2} \tag{2}
\end{align*}
$$

where P is pressure and c_{T} is sonic velocity at temperature T. Equation (1) is found to give a better fit at each T since the standard deviation in each case is

[^0]| $T=21.9^{\circ} \mathrm{C}$ | | $T=40.5^{\circ} \mathrm{C}$ | | $T=42.9{ }^{\circ} \mathrm{C}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pressure | Velocity | Pressure | Velocity | Pressure | Velocity |
| 1 | 1450.1 | 1 | 1441.5 | 1 | 1435.8 |
| 299 | 1457 | 516 | 1453 | 464 | 1447 |
| 584 | 1463 | 932 | 1463 | 925 | 1457 |
| 989 | 1472 | 1458 | 1474 | 1485 | 1469 |
| 1276 | 1478 | 1930 | 1484 | 1942 | 1478 |
| 1532 | 1483 | 2144 | 1488 | 2511 | 1490 |
| 2106 | 1495 | 2769 | 1500 | 2537 | 1491 |
| 3254 | 1517 | 3080 | 1507 | 3019 | 1500 |
| 3264 | 1518 | 3893 | 1522 | 4232 | 1524 |
| 3490 | 1522 | 4298 | 1530 | 4548 | 1530 |
| 4565 | 1542 | 4483 | 1533 | 4942 | 1537 |
| 5772 | 1564 | 5539 | 1552 | 5470 | 1546 |
| 5907 | 1566 | 5642 | 1555 | 6885 | 1572 |
| 6138 | 1570 | 6518 | 1569 | 6915 | 1573 |
| 7542 | 1594 | 7168 | 1581 | 7746 | 1587 |
| 8310 | 1606 | 7175 | 1581 | 8255 | 1595 |
| 8858 | 1615 | 8309 | 1599 | 9533 | 1616 |
| 8950 | 1616 | 8538 | 1604 | 9954 | 1623 |
| 9894 | 1632 | 9399 | 1618 | 10939 | 1639 |
| 10695 | 1644 | 10318 | 1632 | 11203 | 1642 |
| 10926 | 1648 | 10384 | 1634 | 11503 | 1647 |
| 11485 | 1656 | 11830 | 1656 | 11792 | 1651 |
| 11532 | 1657 | 11922 | 1657 | 12968 | 1669 |
| 11985 | 1664 | 12315 | 1663 | 13023 | 1670 |
| 12035 | 1665 | 13270 | 1677 | 13332 | 1675 |
| | | 13709 | 1684 | | |
| | | 14213 | 1691 | | |
| | | 14695 | 1698 | | |
| | | 14921 | 1701 | | |

${ }^{\text {a }}$ Pressure in bars, velocity in meters per second.
about a factor of 3 smaller than for Eq. (2). Equation (1) presents a more reasonable picture physically since it predicts a steady increase of velocity with pressure while Eq. (2) predicts a maximum in c_{T} with pressure and a subsequent decrease. The standard deviations from the least-squares curve of Eq. (1) for the three experimental temperatures are shown in Table III along with the coefficients of the curves. The solid curves in Fig. 4 represent the least-squares equations.
It is possible to use the sound-velocity data described above, in conjunction with certain other data, to calculate the specific volume of Hg as a function of T and P. The calculation starts with the relation between the sound velocity and adiabatic compressibility

$$
\begin{equation*}
\beta_{\mathrm{ad}}=1 / \rho c_{r^{2}}{ }^{2} \tag{3}
\end{equation*}
$$

and the relation

$$
\begin{equation*}
\beta_{T}=\beta_{\mathrm{ad}}+\left(T \alpha^{2} / \rho C_{P}\right), \tag{4}
\end{equation*}
$$

where β_{T} is isothermal compressibility at temperature T,
Table III. Least-squares coefficients of the curve $P=A+$ $B c_{T}+D c_{T}{ }^{2}$ and the standard deviation (σ) of the velocity data.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	21.9°	40.5°	52.9°
$A\left(\right.$ bar $\left.\times 10^{5}\right)$	4.1489	3.9067	4.0715
$B\left(\right.$ bar per $\left.\mathrm{m} / \mathrm{sec}^{\circ} \times 10^{2}\right)$	-1.025	-0.9885	-1.006
$C\left(\right.$ bar per $\left.\mathrm{m}^{2} / \mathrm{sec}^{2} \times 10^{-2}\right)$	5.096	4.976	5.034
$\sigma(\mathrm{~m} / \mathrm{sec})$	0.2	0.3	0.3

[^0]: ${ }^{33}$ L. A. Davis and R. B. Gordon, Rev. Sci. Instr. 38, 371 (1967).

